
iproxy: Running TCP services over UDP

Horms (Simon Horman)
horms@verge.net.au

January 2002

http://verge.net.au/linux/iproxy/

I’ve been to cities that never close down,
From New York to Rio and old London town,
But no matter how far or how wide I roam,
I still call Australia home.

Peter Allen — I Still Call Australia Home

Presented

linux.conf.au
6th – 9th February 2002
University of Queensland
Brisbane, Queensland, Australia

Thanks

Special thanks goes to: Tony Guntharp whose couch in San Francisco was
party to much of the work on this project, along with significant cheese con-
sumption. Ted T’so and Walt Drummond for being obsessed by Multicast.
And last but not least, Andrew Tridgell for conceiving iproxy and inspiring
me to code lots.

Abstract

iproxy comprises of a client-side proxy and a server-side proxy that
allows arbitrary TCP/IP services to run over Broadcast, Multicast or
Unicast UDP. It was originally conceived as a method to configure
servers that had not been given an IP address on the LAN using an
web-based interface.

This paper will focus the implementation issues in sending and
receiving UDP traffic when nothing is known about the network the
machine is attached to. It will illustrate how to create simple Multicast,
Broadcast and Unicast UDP clients and servers. It will also discuss the
problems and solutions realised when trying to carry TCP connections
over UDP.

CONTENTS iii

Contents

1 Introduction 1

2 Implementation 1

2.1 Encapsulation . 2

2.2 Server Discovery . 2

2.3 Opening a Connection . 3

2.4 Connection Tracking . 4

2.5 Closing a Connection . 4

2.6 Acknowledgement . 5

2.7 Timeouts . 5

2.8 Keep Alive . 5

2.9 Multiple Interfaces . 6

3 Variations on a Theme 6

3.1 Broadcast . 7

3.2 Multicast . 7

3.3 Unicast . 9

4 Applications 9

5 Conclusion 10

1 INTRODUCTION 1

1 Introduction

While working on a doomed NAS1 project, it was thought that it would
be nice to be able to configure the NAS boxen without having to configure
their network settings using a console.

Having the NAS box set up to use DHCP[15] is an obvious and desirable
solution. However, we were after a solution for networks that did not have a
DHCP infrastructure in place. The idea of communicating using broadcast
UDP was raised as it allows communications with nodes on the same sub-
net, regardless of their IP address. Central to the idea was that we should
be able to use existing administrative interfaces provided via HTTP[1][8],
HTTPS[16], Telnet[10] and SSH[19]. iproxy was born and a journey into
tunnelling TCP[12] over UDP[13] began.

2 Implementation

Workstation

Client

iproxy-client

NAS

Daemon

iproxy-server

LAN

Figure 1: Basic iproxy Architecture

The iproxy architecture consists of two proxy servers, iproxy-client and
iproxy-server. These daemons convert TCP connections into UDP data-
grams and vice versa.

iproxy-client runs on the user’s workstation. It listens for incoming TCP
connections. This may be from a web browser, SSH or Telnet client, or
a client for any TCP protocol. The iproxy-client then encapsulates this
connection as UDP datagrams. iproxy-server runs on the NAS boxen on
the network and listens for UDP datagrams sent by a iproxy-client. It then
opens a connection to the local daemon, whether it be HTTP, SSH, Telnet

1NAS: Network Attached Storage

2 IMPLEMENTATION 2

or another TCP protocol and relays the encapsulated information from the
user’s client. Replies from the daemon follow the reverse path.

2.1 Encapsulation

Checksum Version Flag Client Id Server Id Length Offset

Figure 2: iproxy Packet Header

To enable a TCP connection to be tunnelled in UDP datagrams some iden-
tification of the packet is required. To achieve this iproxy packets have a
header followed by up to 1048 bytes of data from the TCP connection. To
maximise portability, each field in the header is a 32-bit unisigned integer
in network byte order. The fields are as follows:

• Checksum: Rolling 8-bit checksum of the header fields other than the
checksum and the data.

• Version: iproxy protocol version. Used to identify incompatible ver-
sions of the protocol in the future. Currently 1.

• Flag: Flags to specify special packets, such as Acknowledgements,
Keep Alive and Finish Packets.

• Client Id: Unique identifier of the client.

• Server Id: Unique identifier of the server.

• Length: Total length of the packet including the header and data.

• Offset: Offset. Incremented by the length of the data for each succes-
sive packet. Used in Lieu of a sequence number.

2.2 Server Discovery

Given that the motivation for iproxy is to enable configuration of hosts
running iproxy-server without prior knowledge of their setup, auto discovery
is an important feature of iproxy. This is implemented by iproxy-client
sending a discovery packet with its own Client Id and IPROXY LIST SID
as the Server Id. All iproxy-servers that receive this discovery packet should
reply with using the Client Id in the packet and their own Server Id.

2 IMPLEMENTATION 3

At this stage this is done manually by running iproxy-client with the -l
command-line option which causes it to issue a discovery packet, display
any packets received from iproxy-servers.

iproxy-client -l
[12841] Hello from 66!
[12841] Hello from 67!
[12841] Tired of waiting for Hello replies

Here we see that there are two iproxy-servers running on the network. They
have Server Ids 66 and 67. 12841 is the process Id of the iproxy-client.

We can run an instance of iproxy-client to communicate with the iproxy-
server with Server Id 67 using the -s command-line option.

iproxy-client -s 67

2.3 Opening a Connection

To open a connection a client connects to iproxy-client which is listening on
a known TCP port. On receipt of a new connection iproxy-client sends a
UDP datagram with its Client Id, the Server Id that it has been configured
to communicate with and no data.

When the iproxy-server receives this packet it will open a connection to the
local daemon. If the daemon returns any data at this stage it is returned in
the reply UDP packet, else an empty reply is sent.

For Example:

On the Workstation, configure iproxy-client to communicate with iproxy-
server with Server Id 67, and listen for incoming TCP connections on port
7777. -v runs with verbose debugging.

iproxy-client -s 67 -p 7777 -v

On the Server configure iproxy-server to have Server Id 67 and proxy in-
coming UDP connections to the apache2 daemon running locally on port
80.

2Apache HTTP Server: http://www.apache.org

2 IMPLEMENTATION 4

iproxy-server -s 67 -d 80 -v

If a connection is now opened to port 7777 on the workstation a UDP packet
will be sent from iproxy-client to iproxy-server. On the Server a connection
to local port 80 will be opened and an ACK packet will be send back to
iproxy-client.

In the case of an apache HTTP daemon, the daemon does not send any
data at this stage so nothing further happens until the client that opened
the connection to iproxy-client issues a request. In the case of a service where
the server does issue some data upon connect, such a Telnet, this would be
sent to iproxy-client by iproxy-server and an ACK would be returned by
iproxy-client.

2.4 Connection Tracking

One of the key differences between TCP and UDP is that the former is con-
nection oriented while the latter is not. This means that in order to tunnell
TCP services over UDP there must be a way to keep track of connections.
In particular, as iproxy-server may be receiving UDP datagrams from the
same iproxy-server for different connections at the same time it must be able
to differentiate which connection each datagram belongs to.

To do this the following information is used for each packet: source port,
source address and client id. This is in addition to the destination port
which is matched by UDP and discarding of all packets not addressed to the
iproxy-server’s server id.

A table of active connections is kept on the iproxy-server. If a packet matches
one of these connections then it is considered part of that connection, else
is it considered to be the first packet in a new connection.

2.5 Closing a Connection

A connection may be closed by sending a packet with an empty data section
and the flag entry in the iproxy header set to IPROXY FIN FLAG, a FIN
packet.

On receipt of a FIN packet a FIN packet is sent back. This is an acknowledge-
ment that the FIN was received. iproxy-client will then exit the process that
was forked to handle this connection. iproxy-server on the other hand does
not fork and will mark the connection as closed and and ignore any other

2 IMPLEMENTATION 5

packets for this connection. After the expire timeout, EXPIRE TIMEOUT
seconds the connection will be purged, and thus any subsequent packets will
be assumed to be packets for a new connection, which will most likely time
out.

Connections that are marked as closed may be purged before the expire
timeout if the connection table, which is fixed in size, runs out of free con-
nections and a packet for a new connection is received. If this occurs, the
closed connection closest to its expire timeout will be used.

2.6 Acknowledgement

For each UDP datagram that is received an acknowledgement packet is re-
turned. This is a packet with an empty data section and the flag entry in the
iproxy header set to IPROXY ACK FLAG. Until a packet is Acknowledged,
no additional packets will be sent, that is no additional data will be read
from the associated TCP connections.

Though this scheme is simple and inefficient it all but eliminates the possi-
bility of out of order packets. Thus if any out of order packets are received
they are simply dropped.

2.7 Timeouts

The expire timeout is also used to close idle connections. Each time a packet
is received by a connection its expire timeout is reset. If the expire timeout
passes without the receipt of another packet a FIN packet is sent. In the
case of iproxy-client the forked process will exit. In the case of iproxy-server
the packet will be marked as closed.

There is also a resend timeout, set to RESEND TIMEOUT seconds each
time a packet is received. The purpose of this is to resend packets when if
this timeout expires before an Acknowledgement packet is received.

It is of note that the expire timeout should generally be longer than the
resend timeout, else a resend will never occur as the packet will expire and
the connection will be closed first.

2.8 Keep Alive

In order to prevent protocols that may have be idle for a time, such as Telnet
or SSH, from causing the connection to timeout keep alive packets are sent.

3 VARIATIONS ON A THEME 6

A keep alive packet is a packet with an empty data section and the flag
entry in the iproxy header set to IPROXY KEEPALIVE FLAG. These are
sent by iproxy-client if a connection is idle for KEEPALIVE TIME seconds.
This should be less than EXPIRE TIMEOUT, else iproxy-server will expire
connections before a keep alive is sent.

On receipt of a keep alive packet, iproxy-server will reset the resend and
expire timeouts for the connection. Keep Alive packets are ignored if the
connection is awaiting an Acknowledgement.

2.9 Multiple Interfaces

Given that the motivation for iproxy is to communicate with machines whose
network configuration is not known, it is important that packets are sent
out all available interfaces. Otherwise the packets may be sent out an in-
terface which is not connected to the network, while the interface that has
is connected lies idle. Again, this is only an issue because nothing is known
about the network configuration.

To achieve this iproxy has code to find the base IP address of each active
interface on the host. By binding a socket to each of these addresses and
sending each packet to each of these sockets, packets are sent out each and
every interface.

As a result of this is is possible to receive duplicate packets. The connection
tracking code handles this by rejecting packets who match an existing con-
nection, other than that the source IP address differs. In addition, checks on
the offset field in the iproxy header guard against out of order and duplicate
packets.

3 Variations on a Theme

iproxy was originally conceived to run over broadcast UDP. The idea be-
ing that this can be used to communicate with hosts whose IP address is
unknown. However, there is the restriction that the hosts be on the same
physical subnet. A suggestion was made that using Multicast would enable
communication with nodes on different subnets. For the sake of complete-
ness Unicast support was also added. The line was drawn at Anycast[11].

The main difference between the Broadcast, Multicast and Unicast im-
plementation lies in the handling of sockets. The code used below is for
IPv4[14]. Analogous code for IPv6[5] may be written but is not currently

3 VARIATIONS ON A THEME 7

part of iproxy. This section could not have been written without the assis-
tance of UNIX Network Programming[17].

3.1 Broadcast

When using broadcast UDP, packets sent onto the network are received by
each host on the same physical subnet. As mentioned previously it is desir-
able for iproxy to send packets out each and every interface, thus multiple
sockets are opened.

A socket is opened to listen for incoming datagrams, this is bound to
0.0.0.0 for the configured port, and thus will accept packets for any lo-
cal or broadcast address. A socket is also opened to send outgoing data-
grams on each interface. To do this a socket is opened for each interface and
bound to the address of that interface. Each of these outgoing sockets has
the SO BROADCAST socket option set to enable them to send broadcast
datagrams.

int s;
int one=1;
/* s is an open socket bound to a local interface ... */
setsockopt(s, SOL_SOCKET, SO_BROADCAST,

(char *)&one, sizeof(one));

Figure 3: Setting the SO BROADCAST Option for a Socket

3.2 Multicast

Multicast, like broadcast allows packets to be received by multiple hosts,
and thus is useful in accessing hosts of unknown IP address setup. As long
as iproxy-server is a member of a known multicast group it can be addressed
without any additional information of its current network setup.

The key advantage of multicast over broadcast for iproxy is that multicast
traffic may be routed between physical subnets, providing that a multicast-
routing infrastructure is in place. This is in contrast to broadcast traffic
which is not routed between subnets3.

The key difference programatically between broadcast and multicast is that
the SO BROADCAST socket option is not set and that the multicast time

3UDP broadcast traffic is not routed between subnets, with the notable exception of
the dubious ip helper-address command[4] in Cisco’s IOS.

3 VARIATIONS ON A THEME 8

to live (TTL) must be set and a multicast group must be joined.

The Multicast TTL is set using the the IP MULTICAST TTL socket option.
This sets the number of hops that a multicast packet will survive. At each
routing hop the TTL is decremented and when it reaches zero the packet is
dropped. The default is one, meaning that the packet will be dropped at
the first router it encounters, the same behaviour as broadcast.

int s;
int mcast_ttl=1; /* TTL of multicast packets in hops.

* 1 is the default */
/* s is an open socket bound to a local interface ... */
setsockopt(iface_fd[i], IPPROTO_IP, IP_MULTICAST_TTL,

(char *)&mcast_ttl, sizeof(mcast_ttl));

Figure 4: Setting the Multicast TTL for a Socket

To receive multicast packets a socket must be the member of a multicast
group. A multicast group is simply a Class D address4. A socket joins
a multicast group using the IP ADD MEMBERSHIP socket option. This
causes an IGMP5 message to be sent, announcing to local multicast routers
that the node has joined the multicast group in question.

int s;
struct ip_mreq mreq;
struct in_addr addr;
struct iface_struct iface;
/* s is an open socket bound to a local interface
* addr is the IP address of the multicast group
* iface is a portable structure provided by iproxy,
* borrowed from samba containing the interface’s
* address */
mreq.imr_multiaddr.s_addr=mcast_addr_bin.s_addr;
mreq.imr_interface.s_addr=iface.ip.s_addr;
setsockopt(fd_out, IPPROTO_IP, IP_ADD_MEMBERSHIP,

(void *) &mreq, sizeof(mreq));

Figure 5: Joining a Multicast Group

4Class D: 224.0.0.0/4, addresses reserved for multicast use.
5IGMP: Internet Group Management Protocol. This is the control protocol used for

multicast routing. It is somewhat analogous to the way that ICMP is used for Unicast
routing

4 APPLICATIONS 9

3.3 Unicast

Unicast support was added to iproxy for the sake of completeness. The
key advantage of unicast is that it is universally routed across the Internet,
thus allowing TCP over UDP tunnell to run between two known endpoints.
However, unicast does require prior knowledge of the network configuration
of both endpoints and, hence, is of no use for the configuration task for
which iproxy was originally conceived.

Programatically, unicast was much simpler to implement as only a single
socket needs to be opened which is used for incoming and outgoing data-
grams. No special socket options are required for unicast.

4 Applications

One of the most frequent reactions to tunnelling TCP over UDP is, ”Why?”.
As outlined earlier the original motivation for iproxy was to provide a
method to configure network devices without the need for an existing DHCP
infrastructure or any sort of console or key-pad access. Iproxy is able to do
this, though sadly the project it was originally intended for has since been
disbanded. Given iproxy’s unicast support two esoteric applications spring
to mind owing to UDP traffic being largely ignored by network administra-
tors.

It is of note that many network administrators deploy state-less packet fil-
ters to protect their networks from unwanted nasties coming in and in some
cases to restrict the external access for users of the network. It is beyond
the scope of this paper to discuss the relative merits of state-less packet
filtering, state-full packet filtering and proxy-based firewalls. However, it is
of note that if UDP traffic is allowed to pass through a packet-filter with-
out inspection then iproxy may be used to tunnell arbitrary TCP services
through the packet-filter, thus circumventing the local security policy. While
existing solutions exist to do this by tunnelling traffic via DNS[9], HTTP[2],
HTTPS[3], ICMP[6] and even SMTP[7], iproxy potentially offers vast per-
formance advantages over their solutions.

Continuing the theme of unnoticed UDP traffic it is of particular note that
Internet Packet Quota (IPQ)[18] does not attempt to count UDP traffic.
This partially an implementation issue relating to identify the user that a
particular datagram belongs and partly because UDP traffic was not seen as
something of particular interest in terms of percentage of network utilisation
when IPQ was being developed A creative user with iproxy in hand could
easily change this situation.

5 CONCLUSION 10

5 Conclusion

iproxy enables arbitrary TCP services to be tunnelled over UDP. The im-
plementation currently supports IPv4 and is able to use Multicast Unicast
and Broadcast. This may be used to communicate with hosts whose network
configuration is unknown, in particular to configure network devices. It may
also be used to get TCP traffic past unsuspecting network administrators.

REFERENCES 11

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Rfc1945: Hyper-
text transfer protocol – http/1.0. Internet Engineering Task Force:
http://www.ietf.org/, May 1996.

[2] Lars Brinkoff. httptunnel. http://www.nocrew.org/software/httptunnel.html,
2001.

[3] Chris Chiappa. ssh-https-tunnel. http://www.snurgle.org/ griffon/ssh-
https-tunnel, March 2000.

[4] Cisco Systems, Inc. Cisco IOS IP Configuration Guide, cisco ios 12.2
edition, 2001. http://www.cisco.com/.

[5] S. Deering and R. Hinden. Rfc1883: Internet protocol, version 6 (ipv6)
specification. Internet Engineering Task Force: http://www.ietf.org/,
December 1995.

[6] Magnus Lundström et al. icmptunnel.
http://www.detached.net/icmptunnel/, 1999.

[7] Magnus Lundström et al. mailtunnel.
http://www.detached.net/mailtunnel/, 1999.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.
Rfc2068: Hypertext transfer protocol – http/1.1. Internet Engineer-
ing Task Force: http://www.ietf.org/, January 1997.

[9] Florian Heinz and Julien Oster. Ip tunneling through nameservers,
September 2000. http://www.slashdot.org/.

[10] A. McKenzie. Rfc405: Telnet protocol specification. Internet Engineer-
ing Task Force: http://www.ietf.org/, May 1973.

[11] C. Partridge, T. Mendez, and W. Milliken. Rfc1546: Host anycast-
ing service. Internet Engineering Task Force: http://www.ietf.org/,
November 1993.

[12] J. Postel. Rfc761: Dod standard: Transmission control protocol. Inter-
net Engineering Task Force: http://www.ietf.org/, January 1980.

[13] J. Postel. Rfc768: User datagram protocol. Internet Engineering Task
Force: http://www.ietf.org/, August 1980.

[14] J. Postel. Rfc791: Darpa internet program: Protocol specification. In-
ternet Engineering Task Force: http://www.ietf.org/, September 1981.

REFERENCES 12

[15] R.Droms. Rfc2131: Dynamic host configuration protocol. Internet
Engineering Task Force: http://www.ietf.org/, March 1997.

[16] E. Rescorla. Rfc2818: Http over tls. Internet Engineering Task Force:
http://www.ietf.org/, May 2000.

[17] W. Richard Stevens. UNIX Network Programming. Prentice Hall PTR,
2 edition, 1997.

[18] University Of New South Wales. Ipq: Internet protocol quota.
http://www.cse.unsw.edu.au/ ipq/doc/, 2000.

[19] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen.
Internet-draft: Ssh connection protocol. Internet Engineering Task
Force: http://www.ietf.org/, November 2001.

