
Configuration of Networked Devices using iproxy

Horms (Simon Horman)
horms@verge.net.au

February 2002

http://verge.net.au/linux/iproxy/

Abstract

iproxy is designed to enable networked devices to be configured without prior knowledge of their
network setup. This is intended to aid initial setup, where a network appliance is deployed on a customer’s
network. It is desirable for the customer to be able to configure the appliance without the need for DHCP
infrastructure or console access of any kind. iproxy allows configuration to be done using existing TCP
based administrative interfaces developed for the appliance, such as web-based configuration tools. Thus
iproxy can be integrated seamlessly into the existing management framework for a device.

Introduction

It is desirable to configure network devices without
the need for console access. In particular there is
a need to configure the initial network settings so
subsequent configuration using TCP based configura-
tion interfaces, running over protocols such as HTTP,
HTTPS, Telnet and SSH can be used.

Having the device use DHCP to obtain its IP address
is an obvious and desirable solution. However, a solu-
tion that does not rely on customer networks having
a DHCP infrastructure in place is desirable. iproxy
makes use of UDP to allow TCP-based administra-
tive services to communicate with the network device,
prior to its initial network setup. Thus, existing man-
agement interfaces that has been developed for use
with the device can be used to configure the initial
network settings.

As well as being useful for configuring the network
device when it is first added to a customer’s network,
it is also useful for relocations. iproxy can be used to
reconfigure the network device when it is relocated,
to a different part of the same network, or an entirely
different network.

Implementation

Given the goal of carrying TCP-based services over
UDP, a number of options are available: PPP could
be run over UDP. Alternatively a user-space TCP im-
plantation could tunnell traffic over UDP. However,

the implementation of either of these would require
privileged access under Unix and implementations of
this in user-space on Microsoft Windows would be
difficult.

For this reason a much simpler approach, was taken.
A pair of proxy servers convert TCP connections into
UDP packets and vice versa. While this does not have
some of the performance characteristics of the other
solutions, this is not a problem as iproxy is intended
to carry small amounts of data over a reliable, fast
LAN. The result is a simple client-side implementa-
tion that can easily be ported to different operating
systems.

Workstation

Web
Browser

iproxy-client

Network Device

Web
Server

iproxy-server

iproxy Architecture

iproxy-client runs on the user’s workstation. It listens
for incoming TCP connections. This may be from
a web browser, SSH or Telnet client, or a client for
any TCP protocol. The iproxy-client then encapsu-
lates this connection as UDP packets. iproxy-server
is shipped on the network device to be configured and

1

listens for UDP packets sent by a iproxy-client. It then
opens a connection to the local daemon, whether it
be HTTP, SSH, Telnet or another TCP protocol and
relays the encapsulated information from the user’s
client. Replies from the daemon follow the reverse
path.

Broadcast and Multicast UDP

iproxy was originally conceived to run over broadcast
UDP. The idea being that this can be used to com-
municate with hosts whose IP address is unknown
as broadcast packets are received by all hosts on the
network. However, there is the restriction that the
hosts be on the same physical subnet. Multicast does
not have this restriction, and enables communication
with nodes on different subnets. iproxy supports both
broadcast and multicast modes of operation.

Encapsulation

Checksum

Client Id
Flag

Version

Offset
Length

ServerId

Data...

iproxy packet format

To enable a TCP connection to be tunnelled in UDP
packets some identification of the packet is required.
To achieve this iproxy packets have a header followed
by up to 1048 bytes of data from the TCP connec-
tion. To maximise portability, each field in the header
is a 32-bit unsigned integer in network byte order.

Checksum: Rolling 8-bit checksum of the header
fields other than the checksum and the data.

Version: iproxy protocol version. Used to identify
incompatible versions of the protocol in the future.
Currently 1.

Flag: Flags to specify special packets, such as Ac-
knowledgements, Keep Alive and Finish Packets.

Client Id: Unique identifier of the client.

Server Id: Unique identifier of the server.

Length: Total length of the packet including the body
and data.

Offset: Offset. Incremented by the length of the data
for each successive packet. Used in Lieu of a sequence
number.

Server Discovery

Given that the motivation for iproxy is to enable con-
figuration of hosts running iproxy-server without prior
knowledge of their setup, auto discovery is an impor-
tant feature of iproxy. This is implemented by iproxy-
client sending a discovery packet with its own client
id and a special discovery server id. All iproxy-servers
that receive this discovery packet should reply using
the client id in the packet and their own server id.
Thus, an iproxy-client can readily find all the iproxy-
servers on the network.

Connection Tracking

One of the key differences between TCP and UDP is
that the former is connection oriented while the lat-
ter is not. This means that in order for iproxy to
carry TCP services over UDP it must keep track of
connections. In particular, as iproxy-server may be re-
ceiving UDP packets from the same iproxy-client for
different connections at the same time it must be able
to differentiate which connection each packet belongs
to. To do this information encapsulated in the iproxy
packet is used to differentiate connections and a table
of active connections is kept.

Acknowledgements

For each UDP packet that is received an acknowledge-
ment packet is returned. Until a packet is acknowl-
edged, no additional packets will be sent. Though
simple and inefficient, this scheme all but eliminates
the possibility of out of order packets. Thus, the pro-
tocol does not have any provision for windowing of
back-off. The simplicity of this approach is in keep-
ing with the underlying criteria that iproxy be as sim-
ple as possible and not focus on performance issues.
It is intended to be used infrequently to enable the
configuration of the network for the network device.

Timeouts

Each time a packet is received by a connection its
expire timeout is reset. If the expire timeout passes
without the receipt of another packet the connection
is closed. There is also a resend timeout. The pur-
pose of this is to resend a packet if this timeout expires
before an acknowledgement packet is received.

2

Keep-Alive

In order to prevent protocols that may have be idle for
a time, such as Telnet or SSH, from causing the con-
nection to timeout keep alive packets are sent. This
resets the timeouts for the connection.

Deployment

iproxy-server discovery

connect using iproxy

configure IP address via HTTP

connect using IP address

confiiguration using iproxy

To use iproxy, a user must install iproxy-client on their
workstation. The user then uses their web-browser to
connect to the local iproxy-client. In the reference
implementation, server discovery is a manual process,
but it is possible for this to be done via a web-interface
generated by iproxy-client.

Once the end user has selected a networked device
to configure using iproxy, they connect to the device
by connecting to the local iproxy-client, which will
tunnell their connection over UDP. This should bring
up the networked device’s HTTP administrative in-
terface. This can be used to configure the IP address
of the device. Once this is done, the end user can use
their browser to connect directly to the device.

The same process holds for configuring the networked
device using administrative interfaces running over
SSH, HTTP, HTTPS or any other TCP protocol.

Conclusion

iproxy is able to carry TCP services over Broadcast
and Multicast UDP enabling existing TCP-based ad-
ministrative interfaces to access machines before they
have been configured for a customer’s local network.
The client that needs to be installed on an end-user’s
machine is very simple, allowing easy porting between
different operating systems.

iproxy has been prototyped using Linux. Implementa-
tions on other platforms, including Java are underway.
More information is available from:

http://verge.net.au/linux/iproxy/

3

